Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
Front Neurol ; 15: 1284780, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38456150

RESUMO

Introduction: Hand opening is reduced by abnormal wrist and finger flexor activity in many individuals with stroke. This flexor activity also limits hand opening produced by functional electrical stimulation (FES) of finger and wrist extensor muscles. Recent advances in electrical nerve block technologies have the potential to mitigate this abnormal flexor behavior, but the actual impact of nerve block on hand opening in stroke has not yet been investigated. Methods: In this study, we applied the local anesthetic ropivacaine to the median and ulnar nerve to induce a complete motor block in 9 individuals with stroke and observed the impact of this block on hand opening as measured by hand pentagonal area. Volitional hand opening and FES-driven hand opening were measured, both while the arm was fully supported on a haptic table (Unloaded) and while lifting against gravity (Loaded). Linear mixed effect regression (LMER) modeling was used to determine the effect of Block. Results: The ropivacaine block allowed increased hand opening, both volitional and FES-driven, and for both unloaded and loaded conditions. Notably, only the FES-driven and Loaded condition's improvement in hand opening with the block was statistically significant. Hand opening in the FES and Loaded condition improved following nerve block by nearly 20%. Conclusion: Our results suggest that many individuals with stroke would see improved hand-opening with wrist and finger flexor activity curtailed by nerve block, especially when FES is used to drive the typically paretic finger and wrist extensor muscles. Such a nerve block (potentially produced by aforementioned emerging electrical nerve block technologies) could thus significantly address prior observed shortcomings of FES interventions for individuals with stroke.

2.
Magn Reson Med ; 91(2): 497-512, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37814925

RESUMO

PURPOSE: To determine the sensitivity profiles of probabilistic and deterministic DTI tractography methods in estimating geometric properties in arm muscle anatomy. METHODS: Spin-echo diffusion-weighted MR images were acquired in the dominant arm of 10 participants. Both deterministic and probabilistic tractography were performed in two different muscle architectures of the parallel-structured biceps brachii (and the pennate-structured flexor carpi ulnaris. Muscle fascicle geometry estimates and number of fascicles were evaluated with respect to tractography turning angle, polynomial fitting order, and SNR. The DTI tractography estimated fascicle lengths were compared with measurements obtained from conventional cadaveric dissection and ultrasound modalities. RESULTS: The probabilistic method generally estimated fascicle lengths closer to ranges reported by conventional methods than the deterministic method, most evident in the biceps brachii (p > 0.05), consisting of longer, arc-like fascicles. For both methods, a wide turning angle (50º-90°) generated fascicle lengths that were in close agreement with conventional methods, most evident in the flexor carpi ulnaris (p > 0.05), consisting of shorter, feather-like fascicles. The probabilistic approach produced at least two times more fascicles than the deterministic approach. For both approaches, second-order fitting yielded about double the complete tracts as third-order fitting. In both muscles, as SNR decreased, deterministic tractography produced less fascicles but consistent geometry (p > 0.05), whereas probabilistic tractography produced a consistent number but altered geometry of fascicles (p < 0.001). CONCLUSION: Findings from this study provide best practice recommendations for implementing DTI tractography in skeletal muscle and will inform future in vivo studies of healthy and pathological muscle structure.


Assuntos
Imagem de Tensor de Difusão , Tecido Nervoso , Humanos , Imagem de Tensor de Difusão/métodos , Músculo Esquelético/diagnóstico por imagem , Algoritmos , Ultrassonografia
3.
medRxiv ; 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38045404

RESUMO

Following a hemiparetic stroke, individuals exhibit altered motor unit firing patterns during voluntary muscle contractions, including impairments in firing rate modulation and recruitment. These individuals also exhibit abnormal muscle coactivation through multi-joint synergies (e.g., flexion synergy). Here, we investigate whether motor unit firing activity during flexion synergy-driven contractions of the paretic biceps brachii differs from that of voluntary contractions and use these differences to predict changes in descending motor commands. To accomplish this, we characterized motor unit firing patterns of the biceps brachii in individuals with chronic hemiparetic stroke during voluntary isometric elbow flexion contractions in the paretic and non-paretic limbs, as well as during contractions driven by voluntary effort and by flexion synergy expression in the paretic limb. We observed significant reductions in motor unit firing rate modulation from the non-paretic to paretic limb (non-paretic - paretic: 0.14 pps/%MVT, 95% CI: [0.09 0.19]) that were further reduced during synergy-driven contractions (voluntary paretic - synergy driven: 0.19 pps/%MVT, 95% CI: [0.14 0.25]). Moreover, using recently developed metrics, we evaluated how a stroke-induced reliance on indirect motor pathways alters the inputs that motor units receive and revealed progressive increases in neuromodulatory and inhibitory drive to the motor pool in the paretic limb, with the changes greatest during synergy-driven contractions. These findings suggest that an interplay between heightened neuromodulatory drive and alterations in inhibitory command structure may account for the observed motor unit impairments, further illuminating underlying neural mechanisms involved in the flexion synergy and its impact on motor unit firing patterns post-stroke.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38082632

RESUMO

Reticulospinal Tracts (RSTs) have divergent connections to multiple spinal segments that innervate many upper extremity muscles. Therefore, increased RST engagement can often lead to muscle coactivation across multiple limb joints. The RST originates from the reticular formation (RF) and receives projections from the cortex. This provides the anatomical basis for cortex-brainstem modulation. Currently, we know little about how cortex modulates the RF to control RST engagement during motor preparation for various motor tasks, such as tasks involving proximal and distal upper limb joint coordination vs. a purely distal task. We hypothesize that since a simultaneous arm lifting and hand opening task (LIFTOPEN) requires more selective muscle recruitment than a hand opening task (OPEN), the cortex will suppress the RF to reduce the RST engagement at distal muscles during LIFTOPEN. To test this hypothesis, we investigated the startReact response in thirteen able-bodied participants performing the OPEN and LIFTOPEN tasks in response to a startling and non-startling acoustic stimulation. Our results showed that activation of distal muscles was significantly decreased, and the startle response was delayed in LIFTOPEN compared to OPEN. Both results suggest that the cortex suppressed RF and reduced the RST engagement in LIFTOPEN compared to OPEN.Clinical Relevance- Our results provide foundational knowledge of the task-specific nature of cortex-brainstem modulation. This scientific finding provides a base to compare how a unilateral brain injury may affect this cortex-brainstem modulation.


Assuntos
Mãos , Extremidade Superior , Humanos , Mãos/fisiologia , Formação Reticular , Músculos
5.
Artigo em Inglês | MEDLINE | ID: mdl-38083210

RESUMO

Unilateral brain injuries occurring before at or shortly after full-term can result in hemiplegic cerebral palsy (HCP). HCP affects one side of the body and can be characterized in the hand with measures of weakness and a loss of independent hand control resulting in mirror movements. Hand impairment severity is extremely heterogeneous across individuals with HCP and the neural basis for this variability is unclear. We used diffusion MRI and tractography to investigate the relationship between structural morphology of the supraspinal corticospinal tract (CST) and the severity of two typical hand impairments experienced by individuals with HCP, grasp weakness and mirror movements. Results from nine children with HCP and eight children with typical development show that there is a significant hemispheric association between CST microstructure and hand impairment severity that may be explained by atypical development and fiber distribution of motor pathways. Further analysis in the non-lesioned (dominant) hemisphere shows significant differences for CST termination in the cortex between participants with HCP and those with typical development. These findings suggest that structural disparities at the cellular level in the seemingly unaffected hemisphere after early unilateral brain injury may be the cause of heterogeneous hand impairments seen in this population.Clinical Relevance- Quantitative measurement of the variability in hand function in individuals with HCP is necessary to represent the distinct impairments experienced by each person. Further understanding of the structural neural morphology underlying distal upper extremity motor deficits after early unilateral brain injury will help lead to the development of more specific targeted interventions that increase functional outcomes.


Assuntos
Lesões Encefálicas , Paralisia Cerebral , Transtornos dos Movimentos , Criança , Humanos , Paralisia Cerebral/complicações , Paralisia Cerebral/diagnóstico por imagem , Hemiplegia/complicações , Hemiplegia/diagnóstico por imagem , Tratos Piramidais/diagnóstico por imagem , Extremidade Superior
6.
Clin Neurophysiol ; 156: 38-46, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37862726

RESUMO

OBJECTIVE: Individuals with hemiparetic stroke exhibit an abnormal coupling between shoulder abduction and elbow flexion, or flexion synergy, due to an increased reliance on cortico-bulbospinal pathways. While this motor impairment is well documented, its impact on how movements are perceived remains unexplored. This study investigates whether individuals with hemiparetic stroke accurately perceive torques at their paretic elbow while abducting at their shoulder. METHODS: Ten individuals with hemiparetic stroke participated. We recorded the extent of their abnormal joint coupling as the torque at their elbow, with respect to the maximum voluntary torque in elbow flexion, when abducting at their shoulder. Next, we estimated the perception of their elbow torque by reporting their errors on our torque-matching task. RESULTS: When abducting at the shoulder, the participants with stroke generated a greater non-volitional torque at their paretic elbow (13.2 ± 8.7%) than their non-paretic elbow (1.2 ± 11.2%) (p = 0.003). Regarding the perception of our torque-matching task, participants overestimated their torques to a lesser extent at their paretic elbow (1.8 ± 6.6%) than at their non-paretic elbow (6.2 ± 5.4%) (p = 0.004). CONCLUSIONS: Torque perception at the paretic elbow differed from the non-paretic elbow when abducting at the shoulder. SIGNIFICANCE: This work advances our understanding of the i) somatosensory deficits occurring post hemiparetic stroke and ii) neural basis of torque perception.


Assuntos
Articulação do Cotovelo , Acidente Vascular Cerebral , Humanos , Cotovelo , Ombro , Torque , Paresia/diagnóstico , Paresia/etiologia , Articulação do Cotovelo/fisiologia , Acidente Vascular Cerebral/complicações , Eletromiografia
7.
Artigo em Inglês | MEDLINE | ID: mdl-37285243

RESUMO

Stretch reflexes are crucial for performing accurate movements and providing rapid corrections for unpredictable perturbations. Stretch reflexes are modulated by supraspinal structures via corticofugal pathways. Neural activity in these structures is difficult to observe directly, but the characterization of reflex excitability during volitional movement can be used to study how these structures modulate reflexes and how neurological injuries impact this control, such as in spasticity after stroke. We have developed a novel protocol to quantify stretch reflex excitability during ballistic reaching. This novel method was implemented using a custom haptic device (NACT-3D) capable of applying high-velocity (270 °/s) joint perturbations in the plane of the arm while participants performed 3D reaching tasks in a large workspace. We assessed the protocol on four participants with chronic hemiparetic stroke and two control participants. Participants reached ballistically from a near to a far target, with elbow extension perturbations applied in random catch trials. Perturbations were applied before movement, during the early phase of movement, or near peak movement velocity. Preliminary results show that stretch reflexes were elicited in the stroke group in the biceps muscle during reaching, as measured by electromyographic (EMG) activity both before (pre-motion phase) and during (early motion phase) movement. Reflexive EMG was also seen in the anterior deltoid and pectoralis major in the pre-motion phase. In the control group, no reflexive EMG was seen, as expected. This newly developed methodology allows the study of stretch reflex modulation in new ways by combining multijoint movements with haptic environments and high-velocity perturbations.


Assuntos
Reflexo de Estiramento , Acidente Vascular Cerebral , Humanos , Reflexo de Estiramento/fisiologia , Eletromiografia/métodos , Músculo Esquelético/fisiologia , Braço/fisiologia , Reflexo
8.
Physiol Rep ; 11(10): e15691, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37208978

RESUMO

Muscle tissue is prone to changes in composition and architecture following stroke. Changes in muscle tissue of the extremities are thought to increase resistance to muscle elongation or joint torque under passive conditions. These effects likely compound neuromuscular impairments, exacerbating movement function. Unfortunately, conventional rehabilitation is devoid of precise measures and relies on subjective assessments of passive joint torques. Shear wave ultrasound elastography, a tool to measure muscle mechanical properties, may be readily available for use in the rehabilitation setting as a precise measure, albeit at the muscle-tissue level. To support this postulation, we evaluated the criterion validity of shear wave ultrasound elastography of the biceps brachii; we investigated its relationship with a laboratory-based criterion measure for quantifying elbow joint torque in individuals with moderate to severe chronic stroke. Additionally, we evaluated construct validity, with the specific sub-type of hypothesis testing of known groups, by testing the difference between arms. Measurements were performed under passive conditions at seven positions spanning the arc of elbow joint flexion-extension in both arms of nine individuals with hemiparetic stroke. Surface electromyography was utilized for threshold-based confirmation of muscle quiescence. A moderate relationship between the shear wave velocity and elbow joint torque was identified, and both metrics were greater in the paretic arm. Data supports the progression toward a clinical application of shear wave ultrasound elastography in evaluating altered muscle mechanical properties in stroke, while acknowledging that undetectable muscle activation or hypertonicity may contribute to the measurement. Shear wave ultrasound elastography may augment the conventional method of manually testing joint mobility by providing a high-resolution precise value. Tissue-level measurement may also assist in identifying new therapeutic targets for patient-specific impairment-based interventions.


Assuntos
Técnicas de Imagem por Elasticidade , Articulação do Cotovelo , Acidente Vascular Cerebral , Humanos , Cotovelo/diagnóstico por imagem , Cotovelo/fisiologia , Articulação do Cotovelo/diagnóstico por imagem , Braço , Técnicas de Imagem por Elasticidade/métodos , Torque , Músculo Esquelético/fisiologia , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/diagnóstico por imagem , Eletromiografia
9.
J Neural Eng ; 20(1)2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36626825

RESUMO

Objective.All motor commands flow through motoneurons, which entrain control of their innervated muscle fibers, forming a motor unit (MU). Owing to the high fidelity of action potentials within MUs, their discharge profiles detail the organization of ionotropic excitatory/inhibitory as well as metabotropic neuromodulatory commands to motoneurons. Neuromodulatory inputs (e.g. norepinephrine, serotonin) enhance motoneuron excitability and facilitate persistent inward currents (PICs). PICs introduce quantifiable properties in MU discharge profiles by augmenting depolarizing currents upon activation (i.e. PIC amplification) and facilitating discharge at lower levels of excitatory input than required for recruitment (i.e. PIC prolongation).Approach. Here, we introduce a novel geometric approach to estimate neuromodulatory and inhibitory contributions to MU discharge by exploiting discharge non-linearities introduced by PIC amplification during time-varying linear tasks. In specific, we quantify the deviation from linear discharge ('brace height') and the rate of change in discharge (i.e. acceleration slope, attenuation slope, angle). We further characterize these metrics on a simulated motoneuron pool with known excitatory, inhibitory, and neuromodulatory inputs and on human MUs (number of MUs; Tibialis Anterior: 1448, Medial Gastrocnemius: 2100, Soleus: 1062, First Dorsal Interosseus: 2296).Main results. In the simulated motor pool, we found brace height and attenuation slope to consistently indicate changes in neuromodulation and the pattern of inhibition (excitation-inhibition coupling), respectively, whereas the paired MU analysis (ΔF) was dependent on both neuromodulation and inhibition pattern. Furthermore, we provide estimates of these metrics in human MUs and show comparable variability in ΔFand brace height measures for MUs matched across multiple trials.Significance. Spanning both datasets, we found brace height quantification to provide an intuitive method for achieving graded estimates of neuromodulatory and inhibitory drive to individual MUs. This complements common techniques and provides an avenue for decoupling changes in the level of neuromodulatory and pattern of inhibitory motor commands.


Assuntos
Músculo Esquelético , Alta do Paciente , Humanos , Potenciais de Ação/fisiologia , Músculo Esquelético/fisiologia , Neurônios Motores/fisiologia , Eletromiografia
10.
J Clin Med ; 11(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36362680

RESUMO

The cortical motor system can be reorganized following a stroke, with increased recruitment of the contralesional hemisphere. However, it is unknown whether a similar hemispheric shift occurs in the somatosensory system to adapt to this motor change, and whether this is related to movement impairments. This proof-of-concept study assessed somatosensory evoked potentials (SEPs), P50 and N100, in hemiparetic stroke participants and age-matched controls using high-density electroencephalograph (EEG) recordings during tactile finger stimulation. The laterality index was calculated to determine the hemispheric dominance of the SEP and re-confirmed with source localization. The study found that latencies of P50 and N100 were significantly delayed in stroke brains when stimulating the paretic hand. The amplitude of P50 in the contralateral (to stimulated hand) hemisphere was negatively correlated with the Fügl-Meyer upper extremity motor score in stroke. Bilateral cortical responses were detected in stroke, while only contralateral cortical responses were shown in controls, resulting in a significant difference in the laterality index. These results suggested that somatosensory reorganization after stroke involves increased recruitment of ipsilateral cortical regions, especially for the N100 SEP component. This reorganization delays the latency of somatosensory processing after a stroke. This research provided new insights related to the somatosensory reorganization after stroke, which could enrich future hypothesis-driven therapeutic rehabilitation strategies from a sensory or sensory-motor perspective.

11.
Front Neurol ; 13: 934670, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36299276

RESUMO

Individuals with moderate-to-severe post-stroke hemiparesis cannot control proximal and distal joints of the arm independently because they are constrained to stereotypical movement patterns called flexion and extension synergies. Accumulating evidence indicates that these synergies emerge because of upregulation of diffusely projecting brainstem motor pathways following stroke-induced damage to corticofugal pathways. During our recent work on differences in synergy expression among proximal and distal joints, we serendipitously observed some notable characteristics of synergy-driven muscle activation. It seemed that: paretic wrist/finger muscles were activated maximally during contractions of muscles at a different joint; differences in the magnitude of synergy expression occurred when elicited via contraction of proximal vs. distal muscles; and associated reactions in the paretic limb occurred during maximal efforts with the non-paretic limb, the strength of which seemed to vary depending on which muscles in the non-paretic limb were contracting. Here we formally investigated these observations and interpreted them within the context of the neural mechanisms thought to underlie stereotypical movement patterns. If upregulation of brainstem motor pathways occurs following stroke-induced corticofugal tract damage, then we would expect a pattern of muscle dependency in the observed behaviors consistent with such neural reorganization. Twelve participants with moderate-to-severe hemiparetic stroke and six without stroke performed maximal isometric torque generation in eight directions: shoulder abduction/adduction and elbow, wrist, and finger flexion/extension. Isometric joint torques and surface EMG were recorded from shoulder, elbow, wrist, and finger joints and muscles. For some participants, joint torque and muscle activation generated during maximal voluntary contractions were lower than during maximal synergy-induced contractions (i.e., contractions about a different joint), particularly for wrist and fingers. Synergy-driven contractions were strongest when elicited via proximal joints and weakest when elicited via distal joints. Associated reactions in the wrist/finger flexors were stronger than those of other paretic muscles and were the only ones whose response depended on whether the non-paretic contraction was at a proximal or distal joint. Results provide indirect evidence linking the influence of brainstem motor pathways to abnormal motor behaviors post-stroke, and they demonstrate the need to examine whole-limb behavior when studying or seeking to rehabilitate the paretic upper limb.

12.
Front Neurol ; 13: 764650, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359658

RESUMO

Objective: To characterize how, following a stretch-induced attenuation, volitional muscle activation impacts stretch reflex activity in individuals with stroke. Methods: A robotic device rotated the paretic elbow of individuals with hemiparetic stroke from 70° to 150°, and then back to 70° elbow flexion at an angular speed of 120°/s. This stretching sequence was repeated 20 times. Subsequently, participants volitionally activated their elbow musculature or rested. Finally, the stretching sequence was repeated another 20 times. The flexors' stretch reflex activity was quantified as the net torque measured at 135°. Results: Data from 15 participants indicated that the stretching sequence attenuated the flexion torque (p < 0.001) and resting sustained the attenuation (p = 1.000). Contrastingly, based on data from 14 participants, voluntary muscle activation increased the flexion torque (p < 0.001) to an initial pre-stretch torque magnitude (p = 1.000). Conclusions: Stretch reflex attenuation induced by repeated fast stretches may be nullified when individuals post-stroke volitionally activate their muscles. In contrast, resting may enable a sustained reflex attenuation if the individual remains relaxed. Significance: Stretching is commonly implemented to reduce hyperactive stretch reflexes following a stroke. These findings suggest that stretch reflex accommodation arising from repeated fast stretching may be reversed once an individual volitionally moves their paretic arm.

13.
J Neural Eng ; 19(1)2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-34937005

RESUMO

Objective. Successive improvements in high density surface electromyography and decomposition techniques have facilitated an increasing yield in decomposed motor unit (MU) spike times. Though these advancements enhance the generalizability of findings and promote the application of MU discharge characteristics to inform the neural control of motor output, limitations remain. Specifically, (1) common approaches for generating smooth estimates of MU discharge rates introduce artifacts in quantification, which may bias findings, and (2) discharge characteristics of large MU populations are often difficult to visualize.Approach. In the present study, we propose support vector regression (SVR) as an improved approach for generating smooth continuous estimates of discharge rate and compare the fit characteristics of SVR to traditionally used methods, including Hanning window filtering and polynomial regression. Furthermore, we introduce ensembles as a method to visualize the discharge characteristics of large MU populations. We define ensembles as the average discharge profile of a subpopulation of MUs, composed of a time normalized ensemble average of all units within this subpopulation. Analysis was conducted with MUs decomposed from the tibialis anterior (N= 2128), medial gastrocnemius (N= 2673), and soleus (N= 1190) during isometric plantarflexion and dorsiflexion contractions.Main result. Compared to traditional approaches, we found SVR to alleviate commonly observed inaccuracies and produce significantly less absolute fit error in the initial phase of MU discharge and throughout the entire duration of discharge. Additionally, we found the visualization of MU populations as ensembles to intuitively represent population discharge characteristics with appropriate accuracy for visualization.Significance. The results and methods outlined here provide an improved method for generating estimates of MU discharge rate with SVR and present a unique approach to visualizing MU populations with ensembles. In combination, the use of SVR and generation of ensembles represent an efficient method for rendering population discharge characteristics.


Assuntos
Neurônios Motores , Alta do Paciente , Eletromiografia/métodos , Humanos , Contração Isométrica , Contração Muscular , Músculo Esquelético
14.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 3451-3454, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34891982

RESUMO

A hemiparetic stroke may lead to changes in muscle structure that further exacerbate motor impairments of the paretic limb. Cadaveric measurements have previously been used to study structural parameters in skeletal muscles but has several limitations, including ex vivo fixation. Here, we present novel application of diffusion tensor imaging (DTI) based probabilistic tractography methods, in comparison to the traditional deterministic approach, with respect to cadaveric dissection to quantify in vivo muscle fascicles in the biceps brachii. Preliminary results show that probabilistic tractography yields longer fascicle lengths that are more consistent with cadaveric measurements, albeit with higher variability, while deterministic tractography identifies shorter fascicle lengths, but with less variability. Results suggest that DTI tractography techniques can capture fascicles consistent with previously published cadaveric measurements and can identify interlimb differences in fascicle lengths in an individual with stroke.Clinical Relevance- The methods proposed here describe a non-invasive way to quantify heterogeneous musculoskeletal parameters such as across upper arm muscles in individuals with hemiparetic stroke. This will expand the current knowledge of macro- and micro-structural muscle changes that occur after stroke and may lead to more effective rehabilitation strategies to prevent such changes in individuals with stroke.


Assuntos
Tecido Nervoso , Acidente Vascular Cerebral , Braço , Imagem de Tensor de Difusão , Humanos , Músculo Esquelético/diagnóstico por imagem
15.
J Physiol ; 599(21): 4865-4882, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34505294

RESUMO

Ageing is a natural process causing alterations in the neuromuscular system, which contributes to reduced quality of life. Motor unit (MU) contributes to weakness, but the mechanisms underlying reduced firing rates are unclear. Persistent inward currents (PICs) are crucial for initiation, gain control and maintenance of motoneuron firing, and are directly proportional to the level of monoaminergic input. Since concentrations of monoamines (i.e. serotonin and noradrenaline) are reduced with age, we sought to determine if estimates of PICs are reduced in older (>60 years old) compared to younger adults (<35 years old). We decomposed MU spike trains from high-density surface electromyography over the biceps and triceps brachii during isometric ramp contractions to 20% of maximum. Estimates of PICs (ΔFrequency; or simply ΔF) were computed using the paired MU analysis technique. Regardless of the muscle, peak firing rates of older adults were reduced by ∼1.6 pulses per second (pps) (P = 0.0292), and ΔF was reduced by ∼1.9 pps (P < 0.0001), compared to younger adults. We further found that age predicted ΔF in older adults (P = 0.0261), resulting in a reduction of ∼1 pps per decade, but there was no relationship in younger adults (P = 0.9637). These findings suggest that PICs are reduced in the upper limbs of older adults during submaximal isometric contractions. Reduced PIC magnitude represents one plausible mechanism for reduced firing rates and function in older individuals, but further work is required to understand the implications in other muscles and during a variety of motor tasks. KEY POINTS: Persistent inward currents play an important role in the neural control of human movement and are influenced by neuromodulation via monoamines originating in the brainstem. During ageing, motor unit firing rates are reduced, and there is deterioration of brainstem nuclei, which may reduce persistent inward currents in alpha motoneurons. Here we show that estimates of persistent inward currents (ΔF) of both elbow flexor and extensor motor units are reduced in older adults. Estimates of persistent inward currents have a negative relationship with age in the older adults, but not in the young. This novel mechanism may play a role in the alteration of motor firing rates that occurs with ageing, which may have consequences for motor control.


Assuntos
Contração Isométrica , Neurônios Motores/fisiologia , Músculo Esquelético , Adulto , Cotovelo , Eletromiografia , Humanos , Pessoa de Meia-Idade , Músculo Esquelético/inervação , Músculo Esquelético/fisiologia , Extremidade Superior
16.
Artigo em Inglês | MEDLINE | ID: mdl-34343095

RESUMO

A hallmark impairment in a hemiparetic stroke is a loss of independent joint control resulting in abnormal co-activation of shoulder abductor and elbow flexor muscles in their paretic arm, clinically known as the flexion synergy. The flexion synergy appears while generating shoulder abduction (SABD) torques as lifting the paretic arm. This likely be caused by an increased reliance on contralesional indirect motor pathways following damage to direct corticospinal projections. The assessment of functional connectivity between brain and muscle signals, i.e., brain-muscle connectivity (BMC), may provide insight into such changes to the usage of motor pathways. Our previous model simulation shows that multi-synaptic connections along the indirect motor pathway can generate nonlinear connectivity. We hypothesize that increased usage of indirect motor pathways (as increasing SABD load) will lead to an increase of nonlinear BMC. To test this hypothesis, we measured brain activity, muscle activity from shoulder abductors when stroke participants generate 20% and 40% of maximum SABD torque with their paretic arm. We computed both linear and nonlinear BMC between EEG and EMG. We found dominant nonlinear BMC at contralesional/ipsilateral hemisphere for stroke, whose magnitude increased with the SABD load. These results supported our hypothesis and indicated that nonlinear BMC could provide a quantitative indicator for determining the usage of indirect motor pathways following a hemiparetic stroke.


Assuntos
Acidente Vascular Cerebral , Vias Eferentes , Eletromiografia , Humanos , Movimento , Paresia/etiologia , Amplitude de Movimento Articular , Ombro , Acidente Vascular Cerebral/complicações
17.
Front Neurol ; 12: 687624, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34447346

RESUMO

Background: Neural impairments that follow hemiparetic stroke may negatively affect passive muscle properties, further limiting recovery. However, factors such as hypertonia, spasticity, and botulinum neurotoxin (BoNT), a common clinical intervention, confound our understanding of muscle properties in chronic stroke. Objective: To determine if muscle passive biomechanical properties are different following prolonged, stroke-induced, altered muscle activation and disuse. Methods: Torques about the metacarpophalangeal and wrist joints were measured in different joint postures in both limbs of participants with hemiparetic stroke. First, we evaluated 27 participants with no history of BoNT; hand impairments ranged from mild to severe. Subsequently, seven participants with a history of BoNT injections were evaluated. To mitigate muscle hypertonia, torques were quantified after an extensive stretching protocol and under conditions that encouraged participants to sleep. EMGs were monitored throughout data collection. Results: Among participants who never received BoNT, no significant differences in passive torques between limbs were observed. Among participants who previously received BoNT injections, passive flexion torques about their paretic wrist and finger joints were larger than their non-paretic limb (average interlimb differences = +42.0 ± 7.6SEM Ncm, +26.9 ± 3.9SEM Ncm, respectively), and the range of motion for passive finger extension was significantly smaller (average interlimb difference = -36.3° ± 4.5°SEM; degrees). Conclusion: Our results suggest that neural impairments that follow chronic, hemiparetic stroke do not lead to passive mechanical changes within the wrist and finger muscles. Rather, consistent with animal studies, the data points to potential adverse effects of BoNT on passive muscle properties post-stroke, which warrant further consideration.

18.
Front Neurosci ; 15: 666697, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34393702

RESUMO

Tasks of daily life require the independent use of the arms and hands. Individuals with hemiparetic cerebral palsy (HCP) often experience difficulty with fine motor tasks demonstrating mirrored movements between the arms. In this study, bilateral muscle activations were quantified during single arm isometric maximum efforts and submaximal reaching tasks. The magnitude and direction of mirrored activation was examined in 14 individuals with HCP and 9 age-matched controls. Participants generated maximum voluntary torques (MVTs) in five different directions and completed ballistic reaches while producing up to 80% of shoulder abduction MVT. Electromyography (EMG) signals were recorded from six upper extremity muscles bilaterally. Participants with HCP demonstrated more mirrored activation when volitionally contracting the non-paretic (NP) arm than the paretic arm (F = 83.543, p < 0.001) in isometric efforts. Increased EMG activation during reach acceleration resulted in a larger increase in rest arm co-activation when reaching with the NP arm compared to the paretic arm in the HCP group (t = 8.425, p < 0.001). Mirrored activation is more pronounced when driving the NP arm and scales with effort level. This directionality of mirroring is indicative of the use of ipsilaterally terminating projections of the corticospinal tract (CST) originating in the non-lesioned hemisphere. Peripheral measures of muscle activation provide insight into the descending pathways available for control of the upper extremity after early unilateral brain injury.

19.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34172565

RESUMO

A muscle's structure, or architecture, is indicative of its function and is plastic; changes in input to or use of the muscle alter its architecture. Stroke-induced neural deficits substantially alter both input to and usage of individual muscles. We combined in vivo imaging methods (second-harmonic generation microendoscopy, extended field-of-view ultrasound, and fat-suppression MRI) to quantify functionally meaningful architecture parameters in the biceps brachii of both limbs of individuals with chronic hemiparetic stroke and in age-matched, unimpaired controls. Specifically, serial sarcomere number (SSN) and physiological cross-sectional area (PCSA) were calculated from data collected at three anatomical scales: sarcomere length, fascicle length, and muscle volume. The interlimb differences in SSN and PCSA were significantly larger for stroke participants than for participants without stroke (P = 0.0126 and P = 0.0042, respectively), suggesting we observed muscle adaptations associated with stroke rather than natural interlimb variability. The paretic biceps brachii had ∼8,200 fewer serial sarcomeres and ∼2 cm2 smaller PCSA on average than the contralateral limb (both P < 0.0001). This was manifested by substantially smaller muscle volumes (112 versus 163 cm3), significantly shorter fascicles (11.0 versus 14.0 cm; P < 0.0001), and comparable sarcomere lengths (3.55 versus 3.59 µm; P = 0.6151) between limbs. Most notably, this study provides direct evidence of the loss of serial sarcomeres in human muscle observed in a population with neural impairments that lead to disuse and chronically place the affected muscle at a shortened position. This adaptation is consistent with functional consequences (increased passive resistance to elbow extension) that would amplify already problematic, neurally driven motor impairments.


Assuntos
Músculo Esquelético/patologia , Paresia/complicações , Paresia/patologia , Sarcômeros/patologia , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/patologia , Doença Crônica , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
20.
PLoS One ; 16(4): e0250868, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33930065

RESUMO

Current literature suggests that greater than 50% of survivors of a stroke cannot accurately perceive where their upper extremity is positioned. Our recent work demonstrates that the extent to which this perception is affected can depend on how the task is performed. For example, individuals with stroke who have a deficit in mirroring the position of their passively-placed paretic forearm during a between-arms task may accurately reproduce the position of their actively-controlled paretic forearm during a single-arm task. Moreover, the ability of individuals with various types of unilateral lesions to locate their thumb can depend on whether they reach for their paretic thumb or non-paretic thumb. Consequently, we investigated to what extent the accuracy of individuals post-hemiparetic stroke in mirroring forearm positions on a between-arms task is influenced by various conditions. Eighteen participants with hemiparetic stroke rotated their reference forearm to a target position, and then rotated their opposite forearm to concurrently mirror the position of their reference forearm. This task was performed when participants referenced each forearm (paretic, non-paretic) at two target positions (extension, flexion) for two modes of limb control (passive, active). We quantified for every testing scenario of each participant their position-mirroring error. The number of times for which participants were classified as having a deficit was least when mirroring forearm positions at the flexed position when referencing their non-paretic forearm. Additionally, the difference in the magnitude of errors when participants referenced each arm was greater during active than passive movements. Findings from this study provide further evidence that the accuracy with which individuals post stroke perceive the position of their limbs can depend on how a task is performed. Factors to consider include whether movements are active versus passive, which limb is referenced, and where the limb is positioned.


Assuntos
Antebraço/fisiopatologia , Músculo Esquelético/fisiopatologia , Paresia/fisiopatologia , Acidente Vascular Cerebral/patologia , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Movimento , Amplitude de Movimento Articular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...